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Model-based feedback control of live zebrafish

behavior via interaction with a robotic replica
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Abstract—The possibility of regulating the behavior of live
animals using biologically-inspired robots has attracted the
interest of biologists and engineers for over twenty-five years.
From early work on insects to recent endeavors on mammals,
we have witnessed fascinating applications that have pushed
forward our understanding of animal behavior along new di-
rections. Despite significant progress, most of the research has
focused on open-loop control systems, in which robots execute
predetermined actions, independent of the animal behavior. We
integrate mathematical modeling of social behavior toward the
design of realistic feedback laws for robots to interact with a live
animal. In particular, we leverage recent advancements in data-
driven modeling of zebrafish behavior. Ultimately, we establish
a novel robotic platform that allows real-time actuation of a
biologically-inspired 3D-printed zebrafish replica to implement
model-based control of animal behavior. We demonstrate our
approach through a series of experiments, designed to elucidate
the appraisal of the replica by live subjects with respect to
conspecifics and to quantify the biological value of closed-loop
control.

Index Terms—Animal-robot, collective behavior, ethorobotics,
stochastic differential equations, swimming

I. INTRODUCTION

Interaction of robots with living creatures is of increas-

ing importance in a number of domains, from human-robot 

cooperation [1] to interactive agents for animal enrichment 

[2]. Particularly promising is the application to the field of 

animal behavior, where robotics offers unprecedented tools 

to conduct hypothesis-driven experiments that could help 

unveil the influential cues triggering animal interactions – the 

celebrated “social releasers” in the work of the Nobel Laureate 

Nikolaas Tinbergen [3]. Through robots, we now have access 

to a new array of technological probes that can be utilized 

to induce standardized, repeatable, and consistent response in 

live animals in laboratory assays or field studies [4]–[8].

For example, should we desire to confirm the intuition that 

body size is a determinant of leadership in a given species
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[9], we could embark on the ambitious task of building a

biologically-inspired robot that mimics its live counterpart in

all its aspects except for the size. Then, we would fabricate

several of these robots, systematically changing their size,

and test how live animals will respond to them to ultimately

determine the effect of body size. One may ask, why not

simply choose animals of different size as stimuli rather than

working with robots? The answer is that size may correlate

with other factors, like fitness and age, thereby challenging

the ability to tease out the individual role of body size on

leadership. Replacing live with robotic stimuli, we guarantee

that only size is manipulated, while keeping other factors

constant across trials.

To the best of our knowledge, the first application of

robotics in the study of animal behavior is the seminal work of

Michelsen [10], who evaluated the effect of sound on honey-

bees’ dance. Building upon this endeavor, the last twenty five

years have seen a surge of ambitious studies which capitalize

on the potential of robotics to improve our understanding

of the emotions, perception, and cognition of animals [11]–

[14]. From insects to mammals, researchers have examined

the interactions of animals with biologically-inspired robots

coming from manifold perspectives and scientific premises.

For example, Patricelli et al. [15] investigated the courtship

of male satin bowerbirds using custom-made robotic females,

Takanishi et al. [16] studied the behavioral response of rats to

custom-made rat-like robots, and Kubinyi et al. [17] addressed

the interactions between dogs and commercially available dog-

like robots.

TABLE I: List of recent studies on fish-robot interaction.

Study Species Interaction

[18]–[32] Zebrafish Open-loop

[33] Guppies Open-loop

[34] Poecilia mexicana Open-loop

[35] Three-spined stickleback Open-loop

[36] Bluefin killfish Open-loop

[37], [38] Golden shiners Open-loop

[39] Mosquitofish Open-loop

[40] Giant danios Open-loop

[41] Siamese fighting fish Open-loop

[42]–[44] Weakly electric fishes Open-loop

[45], [46] Guppies Closed-loop

[47]–[50] Zebrafish Closed-loop

[51] Three-spined stickleback/guppies Closed-loop

[52] Golden shiners Closed-loop

A particularly fertile area of investigation is the study

of interactions between fish and biologically-inspired robots.

Several reasons have contributed to the increased interest
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towards this biological niche, resulting in a large number 

of technical publications, see the overview in Table I. First, 

several fish species constitute powerful animal models that 

carry translational value to more complex and sentient or-

ganisms. For example, zebrafish are quickly emerging as the 

species of choice for the study of functional and dysfunctional 

processes in humans due to their surprising neurobiological 

similarities with them [53], [54]. Second, fish and fisheries 

have a significant impact on local and global economies, 

thereby offering a compelling rationale for the need to devise 

strategies that can improve animal production [55], [56]. Third, 

several fish species are currently under significant threat, 

calling for advanced solutions in conservation and control [57].

As summarized in Table I, the literature on fish-robot

interactions can be partitioned into two classes, depending on

the degree of interactivity of the robot. Most of the research

has focused on open-loop instances, in which the motion

of the robot is preprogrammed, irrespectively of the live

subject. Despite significant breakthroughs in the mechanical

design and visual appearance of these robots, the lack of a

bidirectional communication pathway with live subjects limits

the range of their application. A smaller number of papers of

the literature has tackled the more challenging task of closing

the loop between the animal and the robot, such that the

robot could adjust its behavior as a function of the response

of the animal. Implementing a closed-loop control system

mandates the solution of several technical hurdles from real-

time scoring of animal behavior to implementing biologically-

salient feedback laws onboard the robot. While the acquisition

of animal behavior in real-time has seen considerable progress,

our ability to implement closed-loop strategies that are remi-

niscent of real interactions between animals remains limited.

Few research groups have worked in this area. Swain et al. 

[52] developed a platform in which a wheeled robot maneu-

vered a magnetically-connected replica of a koi, a predator 

on golden shiners. Computer vision techniques were used to 

acquire the position of a group of golden shiners and create a 

feedback for the predator to attack the group. Using a similar 

setup, Krause and colleagues explored social interactions in 

guppy and three-spined stickleback [46], [51]. The motion of 

the robotic replica was programmed to approach the center of 

the group or implement some basic social rules found in fish 

[58]. Previous work by one of the authors examined closed-

loop control in a binary choice test, where either the tail beat 

frequency of a stationary robotic fish was adjusted according to 

the position of a focal zebrafish [49], or a replica was maneu-

vered via a three-dimensional manipulator that dynamically 

actuated the replica towards the focal fish [47]. Halloy and 

colleagues sought to enhance the degree of biomimicry of a 

zebrafish replica via a probability-based feedback mechanism 

[48]. Specifically, the instantaneous orientation of the replica 

was drawn from a probability function that accounted for 

the presence of tank walls and four live fish [59], [60]. To 

dynamically adapt the behavior of the replica, this approach 

requires tracking the targets in real-time and periodically scor-

ing the distribution of the group in the tank. The simultaneous 

execution of these tasks makes this approach computationally 

intensive, such that its implementation required three 32-core

computers.

Here, we propose a different approach to close the loop

between fish and robots, and implement for the first time a

model-based feedback control strategy to drive the motion of

the replica in real-time. To achieve this goal, we leverage

recent advancements in data-driven modeling of zebrafish

swimming which allow for accurately capturing the complex

behavior of this species [61]–[63]. The model captures burst-

and-coast swimming style of this species, together with behav-

ioral rules of alignment, attraction, and repulsion that shape

its social response. Toward demonstrating our approach, we

built a novel robotic platform to maneuver a biologically-

inspired zebrafish replica. The platform is based on a custom

Cartesian manipulator that enables accurate turn rate and speed

regulation, combined with a fast reaction time. In a series of

experiments, we evaluated how zebrafish appraise the replica

both in open- and closed-loop dynamics.

In open-loop, the replica moved along model-based trajecto-

ries, independent of the behavior of the live subject. In closed-

loop, the replica utilized real-time data on the behavior of the

live subject to adjust its turn rate and swimming speed based

on the underlying model. Experimental observations on fish-

robot interactions were compared with data collected on pairs

of zebrafish. To offer a comprehensive assessment of zebrafish

response to the replica, we computed measures of locomotor

activity and social behavior. With respect to locomotion, we

studied the distributions of the swimming speed and turn rate.

With respect to social response, we combined classic observ-

ables of schooling and shoaling tendencies with information-

theoretic measures of influence.

The main contributions of this work are: i) to present a

novel robotic platform to study zebrafish behavior, and ii) to

implement and validate a closed-loop strategy for controlling

a biologically-inspired replica via a stochastic model of ze-

brafish behavior. The use of model-based feedback to control

the replica contributes a number of technical advantages. First,

grounding the implementation of the robotic platform in a

dynamic model supports and fosters hypothesis-driven studies

on social behavior, by allowing to independently manipulate

locomotor activity and behavioral rules. Second, the generality

of the model allows for examining a wide range of social

interactions, involving regulation of both turn rate and speed

– for example, speed modulation has been proposed as a key

mechanism for explaining collective behaviour in teleosts [64],

[65], but experimental data are lacking. Third, the availability

of a mathematical model mitigates the need for on-line calibra-

tion that would be required when pursuing more data-hungry

probabilistic-based approaches.

The rest of the paper is organized as follows. A detailed

description of the robotic platform is provided in Section II.

In Section III, the model used for controlling the motion of the

replica is presented. The experimental scheme is summarized

in Section IV, while our approach to data analysis is articulated

in Section V. Experimental results are presented and discussed

in Section VI. Finally, conclusions are drawn in Section VII.
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Fig. 4: A screenshot of the live tracking system. The position

of the live subject and of the replica are identified by green

crosses. The red and blue curves identify trajectory segments

for the fish and replica, respectively. The yellow cross corre-

sponds to the input trajectory from the model of the replica.

The circles in white and the magenta refer to the interaction

radii rω and rv , respectively – marked in the software legend

on the top left corner.

C. Robotic manipulator

The robotic platform maneuvered the replica using a two-

dimensional Cartesian manipulator (XY Plotter Robot Kit,

Makeblock Co., Ltd, Shenzhen, China), which allowed ac-

curate positioning and fast reaction time. The manipulator

was placed below the tank to minimize visual and acoustic

stimuli, which could act as experimental confounds. Two

stepper motors (included in the XY Plotter Robot Kit) were

used for in-plane actuation, and a third stepper motor (NEMA

14, Pololu Corp., Las Vegas, NV, USA) was mounted on the

end-effector to regulate the orientation of the replica.

The manipulator was connected to a custom 3D-printed

terminal (at 0.5 cm from the tank bottom) which encased

two neodymium magnets (diameter 1.7 cm) with opposite

polarization, mirroring the arrangement of the base. The

working area for the manipulator was 39× 31 cm (length and

width), but for the experiments it was reduced to 35× 23 cm
to avoid collisions between the replica and the tank walls.

The platform was controlled via a computer interface that

could maneuver the replica in real-time with a maximum speed

of 35.36 cm s−1 and a maximum turn rate of 25 rad s−1,

which is higher than the typical peak motion data of a live

zebrafish [66]. In addition, swift of actuation was guaranteed

with a maximum linear acceleration of 282 cm s−2, which

is a significant improvement compared to [27]. Beyond the

specific experiment presented herein, the manipulator might

be used for mimicking the behavior of a zebrafish across a

wider range of experimental conditions, including assays on

startle response where large accelerations are achieved [67].

D. Real-time tracking system

A vision-based algorithm for real-time tracking was de-

veloped using the vision library of Matlab R2018a (Math-

works, Natick, Massachusetts, USA) to automatically track 

the position of two targets, simultaneously. The software

implemented a blob detection algorithm, which consisted of

the following steps. First, candidate targets are identified by

comparing adjacent frames. Specifically, the previous frame is

subtracted from the current one to isolate the potential location

of the targets from their motion. This step is implemented

using a binary filter with an empirical threshold to reduce

noise, while limiting the search to a small region close to

the previous positions to lower the computational load. To

refine the location of the candidate targets, a binary filter is

applied to the current frame and the centroids of the blobs are

determined.

To help distinguish live fish from the replica, the nominal

position of the replica commanded to the manipulator was

taken into consideration during real-time tracking. Specifically,

we implemented a Kalman filter to predict the current position

of the two targets. The cost matrix of the algorithm that

accounts for: i) the distance between the predictions and blob

centers, and ii) the difference between the predictions and the

commanded position of the replica. On the cost matrices, we

apply the Hungarian assignment algorithm [68] to differentiate

between the replica and the fish. A screenshot of the live

tracking system is shown in Figure 4.

E. Control implementation

An Arduino Uno microcontroller (Arduino Srl, Italy),

equipped with three A4988 drivers (Kuman Trading Shenzhen

Co Ltd, Shenzhen, China) and a shield (CNC V3 Shield, Ku-

man Trading Shenzhen Co Ltd, Shenzhen, China) were used to

drive the stepper motors of the platform. The microcontroller

was commanded via serial communication by a PC running

a discretized version of the stochastic model of the replica

implemented in Matlab 2018a.

III. MATHEMATICAL MODELING OF ZEBRAFISH BEHAVIOR

Here, we summarize the stochastic model we use to generate

the reference signals of position and heading that are fed to the

experimental platform for controlling the replica. The model

builds on our previous work [61]–[63] towards capturing

mathematically biomimetic motion that encapsulates the burst-

and-coast swimming style of zebrafish and behavioral rules

underlying their social response. Specifically, the model com-

bines the speed modulation and social interactions introduced

in [63] with a refined description of turn rate dynamics [61]

and wall interaction [62].

With reference to Figure 5, the equations describing the

evolution of the heading, ϕ(t), and position vector, [x, y], in

time, t, are

dϕ(t) = ω(t)dt, (1a)

dx(t) = v(t) cos(ϕ(t))dt, (1b)

dy(t) = v(t) sin(ϕ(t))dt, (1c)

xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax. (1d)

Here, ω and v are the stochastic processes describing the

turn rate and forward speed, respectively, and constraints (1d)

ensure that the position is confined in the rectangular domain

[xmin, xmax]×[ymin, ymax]. In what follows, we summarize the
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where uω and uv constitute the feedback from the interaction

with the live fish. Following [63], we set

uω(t) = fd,ω(d(t))

[

kp
(d(t)− rω) sin θ(t)

v(t)
+ kv

sinφ(t)

θω

]

,

(8a)

uv(t) = fd,v(d(t))ks cos θ(t) [d(t)− rv(v(t))] . (8b)

With reference to Figure 6, d and θ are the distance and

angle between the replica and the live fish; φ(t) is the relative

orientation; kp (rad s−2), kv (rad s−2), and ks (s−1) are a set

of tunable gains associated with fish social behavior; rω and

rv(v) are the radii of the repulsion regions, with

rv(v) = rv0
v(t)

µv
. (9)

Following [63], we assume a linear increase of the repulsion

radius rv with the speed, where rv0 > 0 (m) is the nomi-

nal radius at the nominal mean speed. Finally, fd,ω(d) and

fd,v(d) are two decay functions that attenuate the long-range

interactions based on the distance d:

fd,i(d) =

{

1− e(d−δi)/νi , if d(t) < δi,
0, otherwise,

(10)

where δi and νi are tunable parameters, i ∈ {ω, v}.

Equation (8) describes how the replica adjusts its turn rate

and speed to react to the movements of the live fish. In

particular, (8a) regulates the variations in the turn rate and

is composed of two terms. The first steers the replica towards

(away from) the live fish if their distance is greater (lower)

than the repulsion radius rω , while the second term aligns the

heading of the replica with that of the live fish. Equation (8b)

regulates the variation in the speed, such that the replica is

attracted (repulsed) by the live fish at distances higher (lower)

than the repulsion radius rv .

C. Model implementation

We used the standard Euler-Maruyama method [70] to

discretize equations (1), (8), thus yielding

ω(t+∆t) = ω(t) + θω [uω(t) + fw(t)− ω(t)]∆t

+ fc(v(t))
√
∆t∆B(t) + γβ(t)η(t), (11a)

v(t+∆t) = v(t) + θv [uv(t) + µv − v(t)]∆t

+ σv

√
∆t∆Z(t), (11b)

ϕ(t+∆t) = ϕ(t) + ω(t)∆t, (11c)

x(t+∆t) = x(t) + v(t) cos(ϕ(t))∆t, (11d)

y(t+∆t) = y(t) + v(t) sin(ϕ(t))∆t, (11e)

|ω(t)| ≤ ωmax, vmin ≤ v(t) ≤ vmax. (11f)

Here, ∆t is the time step, and ∆B, ∆Z are realizations of

standard normal independent variables. Following [61], we

assumed that only one jump may occur in the small time step

∆t. Hence, the process j in (5) is such that j(t+∆t)−j(t) can

be approximated by a Bernoulli variable β with mean λ∆t.
Accordingly, the jump term in (11a) is modeled as γβη, where

η is a standard normal variable. Constraints (11f) are used to

limit the stress on the actuators.

Most of the parameter values were selected from [62],

[63]. The time step ∆t was chosen to provide sufficient

computational time, while allowing smooth motion of the

replica and minimizing undesired mechanical vibration. The

parameter kw for wall interaction was re-calibrated in separate

simulations to account for the different tank size compared

to [62] and avoid unnatural behavior in the wall proximity.

When operating in closed-loop, we used real-time data on the

position of the live subject to generate the requisite social

interactions, whose parameters were set as in [63]. Table II

summarizes all the parameters selected for the experiment.

TABLE II: Parameter values for the control of the replica in

open- and closed-loop conditions.

Parameter Value Unit Selection

∆t 0.05 s ad hoc

θω 3.58 s−1 [63]

kw 0.10 nondimensional ad hoc

wa 0.88 s−1 [62]

αc 11.81 rad s−
3
2 [63]

βc 11.00 sm−1 [63]

γ 3.27 rad s−1 [62]

λ 0.42 s−1 [62]

θv 0.21 s−1 [63]

σv 2.59 cm s−
3
2 [63]

µv 11.42 cm s−1 [63]

ωmax 20.00 rad s−1 [63]

vmin 0.01 ms−1 ad hoc

vmax 0.20 ms−1 ad hoc

kp 6.00 rad s−2 [63]
kv 12.00 rad s−2 [63]
ks 4.00 s−1 [63]
rω 1.80 cm [63]
rv0 3.60 cm [63]
δω 18.00 cm [63]
δv 21.00 cm [63]
νω 6.00 cm [63]
νv 22.50 cm [63]

IV. EXPERIMENTAL SCHEME

A. Animal and housing

The experimental procedure was approved by the University

Animal Welfare Committee of New York University, under

protocol number 13-1424. Zebrafish were acquired from the

online aquarium supplier Carolina Biological Supply Co.

(Burlington, NC) and were wild-type. The average body length

was 3 cm. The population had a nominal female-to-male ratio

of one. The animals were stored in a local vivarium for a

minimum of 15 days before being used in the experiments.

The water temperature was maintained at 26 ◦C, and its acidity

at 7.0 pH. The stocking density was lower than one fish per

2 liters, and the illumination was controlled according to a 14

hours light/10 hours dark circadian rhythm.

At the beginning of each day of experiments, the tank was

filled with new water and a heater was positioned in the

tank to maintain a temperature of 27 ◦C. Coating (AcquaSafe

Plus, Tetra, Blacksburg, VA, USA) was added to the water to

neutralize potentially harmful chemicals present in tap water.

B. Experimental conditions

Three experimental conditions were performed to evaluate

how zebrafish appraises the robotic replica in both open- and
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closed-loop conditions. More specifically, we considered the

following conditions. In the control condition (2Live), two live

fish swam together in the experimental tank to create a baseline

on which to assess the degree of biomimicry of the replica. In

the open-loop (OL) condition, the replica swam with a live fish

and its motion was driven by the open-loop model in equations

(1), (2), and (6). In the closed-loop (CL) condition, the replica

swam with the fish implementing the closed-loop model in

equations (1), (7), and (8) to simulate social interaction.

C. Experimental procedure

Experiments were performed from January to June 2018.

Every condition consisted of 10 trials, each of them of 22

minutes. A total of 40 experimentally naive subjects were

considered in the study, 20 in condition 2Live and 10 each

for the two conditions with the replica. In each trial, the

live fish were gently transferred from the vivarium to the

experimental tank using a handnet. In 2Live condition, fish

were randomly picked from two different housing tanks in the

vivarium to avoid experimental biases. A habituation period

of 12 minutes was given to the subjects such that only the last

10 minutes of each trial were considered for the subsequent

behavioral analysis. The robotic platform was activated at

the beginning of the habituation period in both OL and CL

conditions to facilitate habituation to the robotic stimulus and

mitigate novelty effects.

Each day, no more than 10 trials were performed: a maxi-

mum of five trials in the morning (from 9:00 AM to 1:30 PM)

and five in the afternoon (from 2:00 PM to 6:30 PM). In each

experimental condition, the schedule of the trials was equally

distributed between morning and afternoon. The frames from

the higher resolution camera were then fed to an in-house-

developed automated software, PEREGRINE, which was used

to accurately track the targets’ trajectories [71]–[74].

V. DATA ANALYSIS

To assess the experimental results, we introduce appropriate

metrics to characterize: i) the performance of the platform

in terms of trajectory, speed and turn rate for the replica, as

well as the computational time and uncertainties in real-time

tracking; ii) the locomotor activity of live subjects; and iii) the

interaction between the zebrafish and the replica.

For all the behavioral analyses, we selected a p-value equal

to 0.05. In case of significant ANOVA comparisons, post-hoc

tests were performed using the Tukey-Kramer method.

A. Metrics for evaluating the platform performance

As a first step in the analysis, we evaluated the performance

of the platform in terms of its ability to reproduce the desired

trajectory, speed, and turn rate for the replica. Specifically, we

computed the average distance between the tracked trajectory

of the replica and the input provided by the discrete model

(11). With respect to speed and turn rate, we compared the

distributions of experimental acquisitions for the replica with

the model input. To quantify the similarity between probability

distributions, say A and B, we used the score

S(A,B) = 1−H(A,B), (12)

where H(A,B) is the Hellinger distance, given by

H(A,B) =
1√
2

√

√

√

√

nb
∑

i=1

(√
ai −

√

bi

)

, (13)

where ai and bi are the frequencies associated to the ith bin

of A and B, respectively, and nb is the number of bins. Notice

that 0 ≤ H(A,B) ≤ 1 and that H(A,B) = 0 (S(A,B) = 1)

only if the two histograms are identical.

To delve into the factors that may determine discrepancies

between the desired and measured responses of the replica,

we examined the computational time of the platform and

uncertainties in the real-time tracking system. The computa-

tional time was a Matlab output, comprising the time required

by the real-time tracking software to acquire the position of

the live subject and the time needed to integrate the discrete

model for calculating the position and heading of the replica

at the next time step. Such a computational time should be

sufficiently smaller than the desired time step ∆t whenever

experimenting with the replica to ensure proper functioning

of the platform. The accuracy of the real-time tracking system

was assessed from the distance between on-line and off-line

tracked trajectories of two randomly selected trials from OL

and CL conditions, including the habituation period.

B. Metrics for scoring fish locomotor activity

Upon clarifying the performance of the platform in replicat-

ing desired motions for the replica, we analyzed the locomotor

activity of focal subjects in the presence of a live conspecific

or the replica. For each fish in OL and CL conditions, we

computed similarity indices in the distribution of speed, turn

rate, linear and angular acceleration with respect to randomly

selected subjects from 2Live trials. Should the fish appraise

the replica as a conspecific, we would obtain similarity indices

close to unity. To offer a baseline for ascertaining the degree

of biomimicry of the replica, we compared these values with

surrogate data generated by pairing subjects in condition 2Live

from different trials using one-way ANOVA.

C. Metrics for measuring fish-replica interactions

Interactions between fish and replica were scored in terms of

shoaling and schooling tendencies [75], social influence [76],

and stress-related response [77]. Shoaling tendency [75] was

measured by computing for each trial the average distance d̄
between the two targets. Schooling tendency was measured

in terms of the average polarization P̄ , which quantifies the

extent to which the two targets align [75]. At any given time

step, their instantaneous polarization was computed as

P (t) =
1

2

∥

∥

∥
eiϕ1(t) + eiϕ2(t)

∥

∥

∥
, (14)

where ϕ1(t) and ϕ2(t) were the targets’ headings at time

t, and i is the imaginary unit. To evaluate whether shoaling

and schooling were different from chance, we computed the

expected distance of two points with uniformly distributed

positions in the tank, and the expected polarization of two

vectors with heading uniformly distributed in [0, 2π]. Then,
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Fig. 7: Pairs of symbols (in red) associated with each region

of the discretized domain as a function of the next position

[xd

i (t+ 1), ydi (t+ 1)] given the current one [xd

i (t), y
d

i (t)].

we used t-tests to compare these baselines with the observed

values of distance and polarization. To ascertain differences

across conditions, we compared average distance and polar-

ization using one-way ANOVA.

To examine social influence underlying the motion of the

two targets, we employed the information-theoretic notion of

transfer entropy [78]. This quantity can be associated with

information flow between two discrete stationary processes,

say Ξ and Υ. More specifically, it quantifies the uncertainty

in predicting the future of a process from its present given

additional knowledge about the past of the other process. In

formulas, this can be written as

TEΥ→Ξ(τ) =
∑

ξt+1,ξt,υt

p(ξt+1, ξt, υt−τ ) log2
p(ξt+1|ξt, υt−τ )

p(ξt+1|ξt)
,

(15)

where p(·) denotes a probability mass function; ξt and ξt+1 are

possible values of Ξ at time t and t+1, respectively; and υt−τ

are possible values of Υ at time t−τ , with τ being the interac-

tion delay [79]. At a given interaction delay τ , the asymmetry

in the information flow between Ξ and Υ is measured by the

net transfer entropy, NetTE(τ) = TEΥ→Ξ(τ) − TEΞ→Υ(τ).
As reviewed in [76], net transfer entropy can be used to infer

influences underlying collective behavior. In particular positive

NetTE(τ) implies that Υ influences Ξ, while the opposite

influence is implied by negative NetTE(τ). For each trial, we

estimated the interaction delay between the targets as

τ∗ = arg max
0≤τ≤τmax

NetTE(τ),

where τmax = 1 s.
In order to mitigate the effects of measurement noise associ-

ated with tracking, we evaluated transfer entropy on symbolic

sequences rather than raw positional data. Towards this aim,

we first partitioned the original spatial domain into a square

lattice of cx×cy cells. Then, we computed the discretized posi-

tions (xd

i (t), y
d

i (t)), i = 1, 2, for each time step t = 1, . . . , T ,

with T being the total number of frames. Building on the

symbolic approach proposed in [80], rather than considering

the exact magnitudes of the discretized position, we focused

on their relative change. To this aim, we transformed the time

series {(xd

i (t), y
d

i (t))}Tt=1 into a simpler sequence, composed

of pairs of ternary symbols {sxi(t), syi(t)}T−1
t=1 . Each symbol

takes value −1, 0, or 1 depending on whether the target

decreases, maintains, or increases its corresponding coordinate

on the grid between two adjacent time steps. For example,

a symbol (−1, 1) implies that from t to t + 1 the target has

swam toward the left-top corner, such that both its coordinates

in the grid have changed (the horizontal has decreased and the

vertical has increased).

To evaluate the sensitivity of the results with respect to the

spatial discretization, the computation was repeated for differ-

ent resolutions by varying the number of cells. Specifically,

cx(r) = 120 + 40(r − 1), r = 1, . . . , 13,

where r identifies the spatial resolution of the discretization

– cy(r) was consistently chosen to preserve square-like cells.

For r = 1, the cell size was 44/120 cm (roughly one tenth

of a body length) and it reached 44/600 cm for r = 13. To

assess whether net transfer entropy was significantly different

than zero, we used a t-test.

In addition, we computed the percentage, say ninspections,

of discrete time steps in which the two targets became closer

than one body length over each trial, that is,

ninspections =
100

T
|{t : d(t−∆t) > 3 cm ∧ d(t) ≤ 3 cm}| .

(16)

This quantity was used to complement the mean distance and

indirectly assess the possibility of predator inspection by live

fish [81]. One-way ANOVA was used to compare conditions.

Thigmotactic and freezing behaviors [77] were measured

to study stress-related response of the animal that could be

triggered by the exposure to a potential predator. Thigmotaxis

or wall-following was computed as the percentage twall of time

spent within one body length (3 cm) from the walls of the

tank [66]. Time spent freezing, defined as complete cessation

of movements except for eyes and gills [77], was computed by

partitioning each trial in 2 s time-windows, and then counting

the number of windows in which the fish position did not

change more than 2 cm [49]. One-way ANOVA was employed

to establish differences across conditions.

VI. EXPERIMENTAL RESULTS

A. Assessment of the robotic platform

As a first step in assessing the performance of the platform,

we examined the degree of similarity between the distributions

of the speed and turn rate of live fish with model implementa-

tion by the platform. From comparison, we determined simi-

larity scores of 0.84±0.02 and 0.86±0.02 (average ± standard

deviation) in OL and CL conditions, respectively. Even higher

similarity scores were registered when comparing the turn rate

distributions (OL: 0.90±0.01 and CL: 0.94±0.01), supporting

the use of the proposed platform to generate biologically-

inspired locomotory patterns for zebrafish experiments.

A similarity score on speed and turn rate above 0.80 offers

compelling evidence for the biomimicry of the movement of

the replica, but does not help clarify whether the platform

implemented the sought model input in real-time. Toward this

aim, we measured the distance between the tracked trajectories

and input generated through (11). From the analysis of OL



SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS 9

trajectories, we determined a mean distance of 2.49 ± 0.12
cm, which is less than the average body length of an animal,

associated with the characteristic length of the experiment.

A direct comparison with respect to existing platforms is

challenging since most of the current endeavors do not seek to

address the problem of maneuvering a desired target according

to a dynamically-varying model input. Perhaps the closest

platform is the one presented in [33], in which a replica of

a guppy is maneuvered along pre-programmed trajectories in

two dimensions using a wheeled ground robot. Performance

is therein assessed by scoring the 90th percentile of the

distribution of the distance, which in our case is 4.35 cm
against 1.30 cm reported in [33].

The reduced performance of our platform should be ascribed

to the combination of methodological differences between

the setups, together with uncertainties in real-time tracking.

With respect to methodological differences, the authors of

[33] considered a reference zigzag trajectory as opposed to

the model-based trajectories implemented herein, and distance

measurements were only taken at five waypoints rather than at

every frame. With respect to the second aspect, we compared

real-time tracked data with off-line tracked trajectories on a

randomly selected open-loop experiment, identifying a 90th

percentile on the distance distribution of 1.04 cm. We com-

ment that this estimate is less forgiving than those based on the

use of static objects [45], which exclude challenges associated

with real-time estimation of fast moving targets. Also, estimat-

ing the distance between real-time and off-line trajectories is

more informative than performing assessments based on the

success rate in blob identification [47], which does not provide

a direct quantification of the tracking accuracy.

Extending the assessment of the platform to the CL condi-

tion, we observed that the mean distance distribution between

tracked trajectories and model input moderately increased to

3.18±0.21 cm. Such an increase with respect to condition OL

should be attributed to two concurrent factors. First, in closed-

loop the controller had to process real-time data on the position

of the live subject to compute the social interaction terms

in (8). Consequently, the computational time increased from

0.03± 0.01 s in OL condition to 0.04± 0.11 s when closing

the loop between the replica and the live subject. Remarkably,

this increase only marginally affected the functionality of the

platform, as the computational time remained smaller than

the desired time step ∆t in 97.34% of the cases. Second, in

closed-loop, the more frequent overlaps between the planar

positions of the replica and the live subject represented a

further challenge for the real-time tracking system, whereby

the 90th percentile of the distance between off-line and real-

time tracking increased to 4.55 cm.

The challenges posed by real-time tracking and by the

rapid variations in speed and velocity of the live subject are

efficiently counterbalanced by the swift of actuation of the

platform. Figure 8 illustrates in a sample CL trial how the

linear and angular distributions of the replica accurately match

those of the live fish, thus enabling the replica to capture

the complex locomotory repertoire of zebrafish swimming in

shallow water.

B. Evaluation of fish response to the replica

The primary goal in designing our robotic platform was

to lend the replica a biologically-inspired appearance and

motion, which would favor its biomimicry. The analysis of

the similarity scores for the speed (F(2,27) = 2.70, p = 0.08),

turn rate (F(2,27) = 1.79, p = 0.19), linear (F(2,27) =
1.01, p = 0.38) and angular (F(2,27) = 0.34, p = 0.72)

acceleration distributions does not suggest that fish altered

their locomotory activity across conditions, see Figure 9.

Overall, this comparison indicates that fish did not change

their swimming speed and style as they interacted with the

replica. In particular, these comparisons seem to exclude the

possibility that fish perceived the replica as a predator or fear-

eliciting stimulus in general, which should have likely resulted

in erratic movements, increased freezing response, and higher

activity [77], [82].

This proposition is in agreement with our previous studies

on the interactions between biologically-inspired 3D-printed

replicas and live zebrafish in binary choice tests [25], [32],

[47], which do not offer evidence of a fear-related emotional

response to the replica. However, several differences exist

between the present setup and our earlier studies, which, in

principle, could have evoked a fear response in the focal

subject. Differently from the present setting, in our previous

work the replica was separated from the live subject by a

transparent panel, which did not permit physical interaction

between them. A priori, such physical interactions could have

constituted a fear stimulus. Also, the replica considered in

our previous work was neither actuated along model-based

trajectories nor was manufactured in a soft material to elicit

body undulations. If not properly implemented, both these ex-

perimental manipulations could have resulted in an unnatural

swimming style and social interaction by the replica, thereby

potentially triggering fear.

Just as fish did not alter their swimming activity due to

the replica, we did not record a variation in their schooling

tendency across conditions (F(2,27) = 0.03, p = 0.98), see

Figure 10. In particular, fish did not tend to align their swim-

ming with a conspecific or a replica, whereby polarization data

were not different from chance (OL: t9 = −0.21, p = 0.84,

and CL: t9 = −0.52, p = 0.61). Likely, this is due to the

reduced size of the tank, which could have limited the ability

of fish to coordinate their swimming with a conspecific or the

replica and favored a thigmotatic [77] response with a stronger

wall interaction. Compared with our previous experiments [63]

where polarization values above 0.9 were recorded, the size

of the tank was reduced by about 80%.

Although locomotor activity and schooling tendency did not

vary across conditions, shoaling tendency exhibited a marked

dependency on the condition (F(2,27) = 44.99, p < 0.01),

see Figure 11. Specifically, the mean distance between the

focal subject and the replica was considerably larger than the

mean distance between two conspecifics in both open- and

closed-loop conditions. While fish maintained a distance of

about two body lengths when swimming in pairs, the distance

between the replica and the fish was approximately six body

lengths in OL condition and five body lengths in CL condition
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Sample distribution of dv/dt Sample distribution of dω/dt

Fig. 8: Time-trace of the speed and turn rate of the replica and live fish in a sample CL trial (top panels), and the corresponding

sample distributions of linear and angular accelerations (bottom panels).

Fig. 9: Similarity score between (from top to bottom) the

speed, turn rate, linear and angular acceleration distributions

of 10 zebrafish swimming in 2Live and those of other 10

live subjects swimming in 2Live, OL, and CL conditions,

respectively.

– the improvement associated with closing the loop on the

response of the focal subject was close to significance (p =
0.06). Despite the reduction in shoaling tendency, the mean

distance in OL and CL conditions was different from chance

(OL: t9 = −6.72, p < 0.01, and CL: t9 = −6.02, p < 0.01),

suggesting that the replica constituted a salient stimulus for

the focal subjects, although less attractive than a live fish.

The saliency of the replica is also supported by the transfer

entropy analysis, which confirms that focal subjects were

influenced by the presence of the replica, see Figure 12. More

specifically, across a wide range of spatial resolutions, we

identified a robust information flow from the replica to the

live fish, which suggests that predicting the future behavior

Fig. 10: Mean polarization as a function of the experimental

condition. Error bars show one standard error. The red dotted

line corresponds to the expected polarization of two vectors

with random orientation.

of a live fish from its present is improved upon additional

knowledge about the past of the replica (OL: t9 < −8.20,

p < 0.01, and CL: t9 < −2.62, p < 0.03 for r from 1 to

12, t9 = −2.23, p = 0.05 for r = 13). Predictably, a net

information flow is not observed in condition 2Live, in which

the two fish mutually influence each other (t-tests, |t9| < 1.85,

p > 0.10 for r from 2 to 13, t9 = −3.25, p = 0.01 for r = 1).

To exclude the possibility that the observed attraction was

due to predator inspection [81], we scored the fraction of the

frames in which the focal fish approached the conspecific or

the replica by crossing a circle of one body length in radius

centered about them. As a function of the experimental con-

dition, we registered a variation in the number of inspections

(F(2,27) = 26.46, p < 0.01), see Figure 13. In agreement with
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*

*

*

Fig. 11: Mean distance as a function of the experimental

condition. Error bars show one standard error. The red dotted

line corresponds to the expected distance of two particles with

random position in the tank. Significance from Tukey-Kramer

post-hoc tests are indicated when relevant. A star denotes

differences from chance (t-test, significance level 0.05). Post-

hoc comparison between OL and CL conditions fail to reach

statistical significance, yielding a p-value of 0.06.

* * * *
* * * * *

* * *
*

** * * *
* * * * ***

*

Fig. 12: Net transfer entropy (TEfish→replica−TEreplica→fish)

for different values of the spatial resolution ri. Error bars show

one standard error. A subscript star denotes differences from

chance (t-test, significance level 0.05).

Fig. 13: Number of inspections over the total number of frames

(18000) as a function of the experimental condition. Error

bars show one standard error. Significance from Tukey-Kramer

post-hoc tests are indicated when relevant.

Fig. 14: Percentage of time spent at less than one body length

from the wall (top panel) and freezing (bottom panel) as a

function of the experimental condition. Error bars show one

standard error.

our expectations, fish did not inspect the replica more than

a live conspecific. Instead, we registered a decrease in the

number of inspections in both OL and CL conditions. Should

the attraction towards the replica be explained by predator

inspection, we would have likely observed an increase in the

number of attempts by the fish to inspect the replica from close

proximity. Based on similarities in locomotor activity across

conditions, reduced number of inspection of the replica with

respect to a conspecific, and our prior work on similar replicas

[32], we can therefore discount predator inspection as the key

mechanism underlying the observed attraction. This thesis is

further supported by the analysis of stress-related behaviors,

such as thigmotaxis and freezing. Indeed, we did not record

a variation in neither the time spent close to the walls nor

freezing (F(2,27) = 1.62, p = 0.22, and F(2,27) = 0.98,

p = 0.39, respectively), suggesting that the replica did not

evoke a stress-related response, see Figure 14.

Although the replica constituted an attractive, salient stimu-

lus, it is unlikely focal fish perceived it as a conspecific. If they

had appraised it as a conspecific, we would have found a closer

correspondence between the number of inspections and the

mean distance between 2Live condition and the two conditions

with the replica. Also, we would have likely observed a

bidirectional influence between the replica and the live fish

in CL condition, similar to 2Live condition. We acknowledge

this as a negative result, whereby we had initially anticipated

that the technical improvements of our platform would have

beget a replica highly comparable to a live stimulus. However,

a number of experimental limitations could have hindered

the biomimicry of the replica. First, the morphology and

coloration of the replica were chosen to mimic a live fish,

but practical limitations in the fabrication and painting process

resulted in a prototype that may not have been appraised as

a conspecific by a focal subject. Second, maneuvering the

replica required both a base and a transparent stick, which

could have reduced the attractiveness of the replica. Third,

the presence of the stick might have contributed to generate

unnatural flow cues from shedding of vortical structures in

its wake, potentially causing a repulsive effect towards live
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subjects. Finally, the motion of the replica was constrained to

a two-dimensional work space, such that the replica could not

dive along the water depth similar to live zebrafish. Future

research endeavors will seek to quantify the severity of these

potential limitations through control experiments and new

engineering solutions.

VII. CONCLUSIONS

The success of biologically-inspired robotics relies on the

ability of robots to mimic social, bidirectional interactions

through closed-loop control systems, where robots could adjust

their behavior in real-time as a function of their live coun-

terparts. Here, we have sought to contribute to this field of

investigation by integrating a stochastic mathematical model

in the design of realistic feedback laws. Leveraging recent

advances in data-driven modeling of zebrafish swimming, we

built a novel robotic platform that actuates a biologically-

inspired replica in real-time through model-based feedback

control. We demonstrated that the replica constitutes a salient

stimulus for zebrafish through comparative, empirical analysis.

These findings support the use of closed-loop model-based

control strategies in robotics-based studies on animal behavior,

as a less computationally expensive alternative to probability

based approaches, see, for instance, [48]. This could be useful,

for example, to study the emergence and role of leadership in

animal groups [83]. We envision that the combination of these

interactive control strategies, along with further enhancements

of the biomimetic appearance of the replica, will open the door

for novel applications in preclinical research, where zebrafish

is emerging as the species of choice.
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